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Abstract
5-Hydroxytryptamine subtype-4 (5-HT4) receptors have stimulated considerable interest amongst scientists and clinicians
owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical
methods applied to data from one thousand 5-HT4 receptor–ligand binding interactions was carried out. The chemical
structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the
hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with
the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the
importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named
Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D
5-HT4 antagonist pharmacophore was established.

Keywords: 5-HT4, antagonists, pharmacophore, clustering, similarity

Introduction

In the last decade, much effort has been directed

towards understanding the functions [1] of the various

receptor subtypes of the neurotransmitter 5-hydroxy-

tryptamine (5-HT; also known as serotonin). Amongst

the 5-HT receptor subtypes, special attention has been

paid to the most recently discovered ones, i.e. 5-HT4, 5-

HT5, 5-HT6 and 5-HT7 [2–6], all linked to stimulation

of cAMP production. The 5-HT4 receptor has

generated the most interest [7] because of its importance

in neurophysiology. Indeed, 5-HT4 receptors have been

demonstrated to modulate the release of neurotrans-

mitters from various neuronal populations in the central

nervous system, including basalocortical cholinergic

[8,9], striatal dopaminergic [10,11] and hippocampal

serotoninergic [12] cells. Moreover, 5-HT4 receptors

have been implicated incognitive performance [13–17],

leading to the proposition that they could be targets for

treatment of the cognitive deficits associated with

Alzheimer’s disease.

Our project began with the implementation of a

screening platform related to 5-HT ligands (ATBI

program). Design, synthesis, and biological evaluation of

chemical compounds directed towards 5-HT4, 5-HT5A,

5-HT6 and 5-HT7 receptors are the initial objectives of

this research program. The first phase was to study

pharmacomodulation of a basic skeleton formed by an

aromatic system bearing various substituents, and

particularly an aminoalkyl chain (Figure 1).

The definition and comparison of pharmacophores

for both 5-HT3 receptor partial agonists [18] (Figure 2)

and 5-HT4 receptor antagonists (Figure 3) led to the

design of new 5-HT4 antagonists corresponding to

selective compounds 1 and 2 (Scheme 1) [19,20].
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The characteristics associated with 5-HT4 ligands

seemtobewell-definedby thispharmacophore.Through

our own work and through external collaborations, many

other derivatives were tested against this receptor,

generating 5-HT4 receptor binding data for one thous-

and ligand–receptor complexes. This article provides an

overview of these 5-HT4 data, in terms of agreement

with the 3D pharmacophore, similarities between

invidious, and classification into chemical families. This

last approach requires a comparison of the derivatives

using a specific metric based on chemical descriptors and

the application of clustering algorithms [21].

Materials and methods

Dataset

Percentage inhibition at two concentrations, 1026 M

and 1028 M was determined. For the binding data

recorded at 1026 M (Figure 4), the dataset was

separated into three groups corresponding to active

(percentage of inhibition $ 70%), intermediate (per-

centage of inhibition between 40% and 70%) and

inactive derivatives.

The diversity of this data set was estimated by

calculating dissimilarities between the different com-

pounds based on the Unity fingerprint and Tanimoto

coefficient (vide infra). The average and the density

dissimilarity values for the nearest (ANN), farthest

(AFN) and all neighbours (OAN) of each derivative

were determined (Table I).

With a value around 0.5 (OAN) for the active

compounds, these derivatives are more similar to one

another compared to the overall dataset (0.7 for

OAN). The graph (Figure 5) describing the density

dissimilarity values clearly shows the particular range

of dissimilarity values for the active compounds

(red curve).

Figure 1. General representation of the pharmacomodulation program.

Figure 2. 5-HT3 partial agonist pharmacophore.
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3D pharmacophore and conformations

To test the 3D agreement of the different compounds

towards our previous 3D 5-HT4 antagonist pharma-

cophore (see Figure 3), a quasi-exhaustive confor-

mational search was done for each compound (Fast

method with Catalyst software). The maximum energy

range between the conformers, and the maximum

number of conformers for each compound were fixed

at 20 kcal/mol and 250 (default values), respectively.

In this study, a compound was considered as being in

agreement with the 3D pharmacophore if it could fit all

the pharmacophoric features whatever the value of the

fit (fit value .0).

Fingerprints

Three classes of fingerprint descriptorswere considered:

hashed fingerprints, hybrid fingerprints (hashed and

structural keys), and pharmacophore fingerprints. The

first two encode chemical information in terms of bit

strings. Pharmacophore fingerprints encode chemical

features corresponding to atom types, in two ways:

integer values for pharmacophore fingerprints and real

values for fuzzy pharmacophore fingerprints.

JChem hashed fingerprints [22]

These fingerprints are generated by enumerating all

cycles and linear paths up to a given number of bonds

(maximum length of linear path) and hashing each of

them into a fixed bit string (fingerprint length). The

bit string generated depends on the number of bonds,

the number of bits set (maximum pattern length), the

length of the bit string, and the hashing function. Each

of these parameters, except the fixed hashing function,

has been optimised. By following criteria based on the

notion that an optimum fingerprint must have a

maximum darkness (percentage of bit 1 in the

fingerprint) lower than 80% and an average darkness

around 40%, the fingerprint length, the maximum

linear path length, and the number of bits for each

feature were chosen to be 1024, 7, and 3, respectively.

A maximum darkness of 70.6% and an average

darkness of 45.3% were obtained in this case.

Unity hybrid fingerprint [23]

This fingerprint corresponds to the analysis of length 2

through 6 fragments, the encoding of atom and bond

types, and a fragment-based screen generation for

heteroatoms and phenyl rings. Unity fingerprints

represent each compound through a 988-dimensional

bit string.

2-D atom-based pharmacophore fingerprints [22]

The interest of pharmacophoric fingerprints is logical

by considering our previous data on 3D pharmaco-

phore. Potential pharmacophoric point pairs (PPP)

[24] were calculated. The following features were

defined and applied for each atom: hydrogen bond

acceptor/donor, hydrophobicity, aromaticity, and

whether cationic or anionic. In this representation,

each pattern of the fingerprint corresponds to the

shortest path between two nodes (atoms/features) of

the chemical graph. Starting from a distance between

1 and 10, the 210 fingerprint length encodes the

number of times a pattern was found (integer values).

Scheme 1. Structures of compounds 1 and 2.

Figure 3. 5-HT4 antagonist pharmacophore.
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Fuzzy 2-D pharmacophore fingerprints [22]

The algorithm uses a smoothing factor to modulate

the previous 2D atom-based pharmacophore finger-

prints. The fuzzy pharmacophore led to a modulation

of the initial distance between two features by applying

a smoothing factor to the initial separation (n bonds).

The default smoothing factor (0.7 in this case) led to

the following multiplicative factors being applied to

the initial value recorded for a distance of n bonds

between two features: 0.15 (n 2 1), 0.7 (n), and 0.15

(n þ 1). This fingerprint has a 210 length with real

values in this case.

Dissimilarity matrix for binary data

The function “fp.sim.matrix” of the R fingerprint

package [25] was used with Euclidean, Tanimoto,

modified Tanimoto, and Dice methods to obtain

similarity values (C). From these similarity data, the

dissimilarity coefficients (DC ¼ 1 2 C) were calcu-

lated to generate the dissimilarity matrix. In the

following equations, a and d correspond to the co-

occurrences between two fingerprints associated with

“on” bits (value ¼ 1) and “off” bits (value ¼ 0),

respectively. b corresponds to the number of “on” bits

in one fingerprint and “off” bits in the second

fingerprint (the reverse is true for c).

The Euclidean coefficient (EB) [26] corresponds to

the square root of the matching coefficient [27].

EB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ d

a þ b þ c þ d

r

The Tanimoto coefficient (T) [28] corresponds to

the well-known Jaccard-Tanimoto coefficient.

T ¼
a

a þ b þ c

The modified Tanimoto (MT) [29] is a less size-

biased coefficient compared to the Tanimoto coeffi-

cient. Indeed, the Tanimoto coefficient does not

consider the “off” co-occurrences and it is also known

to privilege small compounds in dissimilarity selection

and large compounds in similarity selection [30].

MT ¼ aT þ ð1 2 aÞT0 with a ¼
2 2 p

3
;

p ¼
2a þ b þ c

2n
; n ¼ a þ b þ c þ d et

T0 ¼
d

b þ c þ d

The Dice coefficient (D) [31] is equivalent to the

Tanimoto coefficient, except that a double weight is

given to positive co-occurrences (a).

D ¼
2a

2a þ b þ c

Table I. Dataset dissimilarity values.

Dataset/Dataset ANN AFN OAN

Overall/Overall 0.10 0.87 0.68

Actives/Inactives 0.42 0.80 0.67

Actives/Actives 0.06 0.76 0.46

Inactives/Inactives 0.12 0.87 0.70

Figure 4. Frequencies vs Class (%/100) associated with the percentage of inhibition at 1026M.
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Dissimilarity matrix for continuous data

The function “dist” of the R cluster package [32] was

used with Euclidean, Canberra, Maximum, and Binary

methods.

The Euclidean distance (EC) between compounds i

and j corresponds to the classical equation where xik is

the value of the N-vector associated with compound xi

at the k position.

EC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

ðxik 2 xjkÞ
2

vuut

The Canberra distance [33] (C) is a normalised

distance. However, for its implementation in R

(function “dist”), when the denominator is equal to

zero, a value of 1 was considered in the final sum. This

point was modified, and when the denominator is

equal to zero, the value is omitted from the sum and

treated as a missing value. With this modification, the

results concerning the hierarchies were slightly

improved.

C ¼
X jxik 2 xjkj

xik þ xjk

� �

The Maximum (M) distance considers only the

maximum difference between two fingerprints.

M ¼ max jxik 2 xjkj
� �

Binary metric (B), transformed the fingerprints into

a list of binary bits, so that the non-zero elements are

“on” and the zero elements are “off”. Its definition

leads to the dissimilarity form of the Tanimoto

coefficient (B ¼ 1 2 T).

B ¼
b þ c

a þ b þ c

Clustering algorithms

Five hierarchical, agglomerative clustering methods

were evaluated in this study. Four of them—Ward,

Complete, Average and Single—are well-known.

Energy is a new method [34] and has never been

evaluated in chemical clustering. Single, complete and

average linkage define the intercluster distances as the

minimum, maximum, and average values, respect-

ively, between two clusters [35–37]. Ward [38] and

Energy [34] methods consider homogeneity and

separability of the different clusters as a basis for the

clustering. In contrast to the linkage method, these

methods do not group together clusters with the

smallest distances, but unify clusters such that

the internal variation (dissimilarity values) does not

increase too drastically. More precisely, during the

clustering process, Ward minimises the increase,

proportional to the square of the Euclidean distance,

between cluster centres. In contrast, Energy, for the

same approach, is based on the Euclidean distance.

For this difference, previous data show that if the

clusters are characterised by their means, Ward is a

good choice; however, if the clusters are characterised

by their distributions, then Energy is better [34].

Effectiveness

In the literature, three methods are popular to

measure the effectiveness of the clustering process.

Figure 5. Overall Density Neighbors density representation. (black: overall; green: actives-inactives; red: actives-actives; brown: inactives-

inactives).
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The first one compares the final result (hierarchy) to a

reference [39–41]. The second analyses the capacity

of a clustering process to predict a molecular property

[41,42]. The third method evaluates the separation

between active and inactive compounds during the

clustering process [24,43,44].

For the first method, no clustering reference

corresponding to our dataset is present and a manual

determination, based on the structures, will bias the

comparison. For the second method, if the similarity

techniques are based on the argument that similar

compounds present the same biological activity, then

the reciprocity is not available for inactive compounds.

So, these methods were discarded and only the third

method was kept. Brown et al. [24] defined an active

cluster as having at least one active compound

(singletons were not considered). Their studies led

to the definition of an index, named Pa, corresponding

to the proportion of active compounds in the active

clusters. However, with this definition, an active

compound alone in a large inactive cluster led to an

important decrease of Pa (see Figure 6).

Thus, comparison of large clusters associated with a

high level of clustering is biased by the presence of few

active compounds in inactive clusters. Starting from

this point and after several trials, we defined a new

index based on a new definition of active clusters. In

this study, an active cluster is a cluster (without

considering the singletons) for which the percentage of

active compounds is greater than the initial percentage

of active compounds in the dataset (16.3%). From this

definition, an optimal hierarchy must lead to a

maximum number of active compounds in active

clusters, a minimum number of inactive compounds

in active clusters, a minimum number of active

compounds in inactive clusters, and a minimum

number of active singletons. With these points, an

index (see Figure 6), named QCI for Quality

Clustering Index, was defined with x corresponding

to the number of active compounds in active clusters,

y the number of inactive compounds in active

clusters, z the number of active compounds in inactive

clusters, and w the number of active singletons.

QCI ¼ x=ðx þ y þ z þ wÞ

The next point concerns the optimal level,

corresponding to the best separation between active

and inactive compounds. Many indexes were pro-

posed, but none seems to outperform any other [45].

In this study, we have considered that a small number

of clusters must be privileged (low level of clustering).

So, our index (QCI) was modulated by a multi-

plicative factor in relation to the level of clustering

(weight of 1 for the first level to 1/1000 for the

thousandth level), leading to the determination of a

new index named QCIW. The evolution of QCIW

values was followed, at each level, by calculating a

Euclidean distance (QCIWD) between the QCIW

curve and no classification (QCIW ¼ 0). Indeed, this

last value (QCIWD) allows the comparison of the

different combinations (descriptor/metric/clustering

algorithm) in terms of their capacities to separate

active and inactive compounds during the overall

clustering process.

Dendrogram

The function “A2RPlot.hclust” was used to build the

representation, employing the e-distance (Energy)

between merging clusters.

Figure 6. Evolution of the different indexes as a function of clustering level (Unity fingerprint/Tanimoto/Energy). (Pa curve in red, QCI

curve in green; QCIW curve in blue).

T. Varin et al.598
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Results

Comparison of the hierarchy

The data were ranked as a function of QCIWD values

(see Table II).

The best combinations were obtained with phar-

macophore fingerprints/Canberra/Energy or Ward

methods. Thus, pharmacophore fingerprints are able

to differentiate very effectively between active and

inactive compounds. This result was obtained with

Canberra, for which the key point is that a difference

between two observations associated with high values

contributes less to the dissimilarity of two compounds.

For instance, two compounds with 100 versus 99

observations for pharmacophoric pair feature A

(a typical situation associated with hydrophobic–

hydrophobic atoms separated by n bonds) and 2 versus

1 observations for pharmacophoric pair feature B (a

situation associated with polar–polar atoms separated

by n bonds), Canberra distances are equal to 0.005 for

A and 0.33 for B whereas Euclidean distances are

equivalent for the two compounds (values of 1).

Moreover, if two compounds present, respectively, 10

and 0 observations of pharmacophoric pair feature A

and 1 and 0 observations for pharmacophoric pair

feature B, Canberra distances are equal to 1 whereas

Euclidean distances are 10 for A and 1 for B. The

same tendency is present with the binary metric. The

highest values in our pharmacophore fingerprints

correspond to hydrophobic features (this is classically

the case). Our results show, that by decreasing the

weight of these features, the clustering process is

largely improved. Energy always gives better or

equivalent results for the clustering process

(Table III) compared to Ward. A clear explanation

for this result is difficult at this time but we can

suppose that our clusters are more efficiently

characterised by their distributions instead of their

means. The mean value is classically represented by a

structure corresponding to a centroid. So the selection

of this compound as a structure representative of a

family or a comparison of the families based only on

the centroid might not be so meaningful.

Unity fingerprints associated with Tanimoto or the

modified Tanimoto (MT) coefficient and Energy

method gave the most interesting results. The use of

MT compared to Tanimoto did not improve the final

result, indicating that the sizes of the structures in our

dataset must be relatively homogeneous and have no

influence on the final result.

For fuzzy pharmacophore, the results are less

interesting than for the other fingerprints. The best

results were obtained with Euclidean, Canberra or

Maximum metrics associated with Energy. The binary

metric was the worst performer. The concept of a

smoothing factor is interesting but, in this case, a more

specific metric should be defined for this descriptor.

Dendrogram

With “pharmacophore fingerprint/Canberra/Energy”

and a level corresponding to the maximum value of

QCIW, four active clusters representing 88% of the

active compounds of the overall dataset were obtained

(see Figure 7). These four clusters include 72% of

active compounds and 13% of inactive compounds,

the remaining set corresponding to intermediate

compounds. The dendrogram shows (see Figure 7),

on the left side, a clear separation leading to the active

clusters 1 (in red, left side) and 2 (orange, left side

close to cluster 1). Cluster 1 represents 114 derivatives

with 90 active compounds. Cluster 2 represents 33

derivatives with 22 active compounds. Cluster 3

represents 17 compounds with 16 active compounds.

Cluster 4 represents 36 compounds with 15 active

compounds.

With the combination “Unity/Tanimoto/Energy”

and a level corresponding to the maximum value of

QCIW, only one active cluster was obtained, including

66% of active compounds and 14% of intermediate

compounds. The dendrogram clearly shows (see

Figure 8) the rapid separation between active and

inactive derivatives. Of the 1000 derivatives, the

repartitions are 622 for cluster 1 (in red, inactive

cluster), 186 for cluster 2 (in green, inactive cluster),

and 192 for cluster 3 (in blue, active cluster).

3D pharmacophore

Analysis of the agreement between the conformations of

the derivatives and our previous 3D pharmacophore

(Figure 3) was carried out in parallel. The objective was

to determine the quality of this 3D pharmacophore and

Table II. Classification of the hierarchies (the first twenty) as a

function of QCIWD values.

Fingerprint Metric Method QCIWD

Pfp_ JChem Canberra Energy 11.77

Pfp_ JChem Canberra Ward 11.67

Pfp_ JChem Binary Ward 11.54

Ufp_Unity Tanimoto Energy 11.35

Ufp_Unity MT Energy 11.33

Pfp_ JChem Binary Energy 11.31

Ufp_Unity Dice Energy 11.30

Ufp_Unity Euclidean Energy 11.29

Ufp_Unity MT Ward 11.22

Cfp_ JChem MT Energy 11.17

Pfp_ JChem Canberra Complete 11.17

Cfp_ JChem Euclidean Energy 11.17

Ufp_Unity Tanimoto Ward 11.17

Cfp_ JChem Euclidean Ward 11.17

Fpfp_ Jchem Euclidean Energy 11.14

Pfp_ JChem Euclidean Energy 11.14

Cfp_ JChem Tanimoto Energy 11.13

Ufp_Unity Euclidean Ward 11.12

Cfp_ JChem MT Ward 11.08

Ufp_Unity Dice Ward 11.07

3D Pharmacophore for 5-HT4 receptor binding 599
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also the relationships with the previous 2D analyses

(fingerprints and clustering). If we considered the

overall dataset, 25% of the derivatives fit the 3D

pharmacophore and, of this set, 48% of the derivatives

are active towards the 5-HT4 receptor. By considering

only active clusters defined by the previous selected

clustering process (see Tables IV and V), 72% (þ47%

compared to the initial dataset) of the derivatives fit the

3D pharmacophore for the combination with pharma-

cophore fingerprintand 66%withUnity fingerprint. For

inactive clusters, the great majority of compounds do

not fit the 3D pharmacophore: 87% (þ12% compared

to the initial dataset) for pharmacophore fingerprint and

85% for Unity fingerprint. A more precise analysis of

active clusters shows that, with pharmacophore finger-

print, 80% of the active compounds and 53% for the

inactive compounds fit the pharmacophore (þ28%

compared to the initial dataset). For Unity fingerprint,

the corresponding values were 81% of active com-

pounds but only 37% of inactive compounds (þ22%

compared to the initial dataset). Therefore, the

behaviours of pharmacophore fingerprint and 3D

pharmacophore with respect to classification (active

vs. inactive) in the active cluster are very close (closer

than Unity fingerprint: 53% vs 37%). The same

observation was made for inactive clusters, where 75%

of active compounds do not fit the pharmacophore

(compared to only 56% for Unity).

Table III. Comparison as a function of QCIWD values.

Fingerprint Metric Energy Ward Complete Average Single

Cfp_ Jchem Euclidean 11.17 11.17 10.60 10.26 9.40

Cfp_ Jchem Tanimoto 11.13 10.97 9.99 9.76 8.86

Cfp_ Jchem Dice 11.03 10.90 9.99 9.78 8.86

Cfp_ Jchem MT 11.17 11.08 10.39 9.99 9.07

Ufp_Unity Euclidean 11.29 11.12 10.33 9.97 9.04

Ufp_Unity Tanimoto 11.35 11.17 9.99 9.73 8.77

Ufp_Unity Dice 11.30 11.07 9.99 9.73 8.77

Ufp_Unity MT 11.33 11.22 9.94 9.77 8.83

Pfp_ Jchem Euclidean 11.14 11.05 10.50 10.23 6.18

Pfp_ Jchem Maximum 10.16 9.83 9.40 9.21 6.01

Pfp_ Jchem Canberra 11.77 11.67 11.17 10.68 7.44

Pfp_ Jchem Binary 11.31 11.54 10.62 10.20 7.33

Fpfp_ Jchem Euclidean 11.14 10.96 10.34 9.58 7.55

Fpfp_ Jchem Maximum 10.50 10.35 10.10 9.34 7.64

Fpfp_ Jchem Canberra 10.78 10.69 9.87 9.16 6.90

Fpfp_ Jchem Binary 8.78 7.88 7.42 6.69 5.77

Average 10.96 10.79 10.04 9.63 7.90

Standard Deviation 0.69 0.89 0.81 0.88 1.21

Figure 7. Dendrogram associated corresponding to the best hierarchy based on pharmacophore fingerprint (Pfp_Jchem/Canberra/Energy).

The numbers indicate the branches corresponding to active clusters (on the right of the number).
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Overall, the 3D pharmacophore is very effective in

being able to extract potential ligands from a database.

Comparison of the clustering processes shows that 2D

and 3D pharmacophores have similar behaviours for

classification of derivatives.

Conclusion

This comparative analysis of different combinations

associated with hierarchical clustering clearly shows

the power of 2D chemical and pharmacophore

fingerprints for efficiently classifying chemical deriva-

tives in terms of molecular similarity and biological

activity. We pointed out the importance of the metrics

associated with each descriptor and particularly the

Canberra approach for pharmacophore fingerprints.

For the clustering algorithms, our study clearly

demonstrates the effectiveness of a recent modifi-

cation of the Ward method named Energy, irrespective

of the fingerprint. Our study also illustrates the power

Table IV. Line up of active and inactive clusters as a function of the activity and fit values.

Number of compounds

Activity of clusters Activity of compounds Fit the pharmacophore Pfp/Canberra/Energy Unity/Tanimoto/Energy

Active Active Yes 114 103

No 29 24

Inactive Yes 30 24

No 27 41

Inactive Active Yes 5 16

No 15 20

Inactive Yes 97 103

No 683 669

Table V. Percentage of compounds in active and inactive clusters in relation to fit towards the 3D pharmacophore.

Percentage of compounds

Activity of clusters Fit the pharmacophore Compounds Pfp/Canberra/Energy Unity/Tanimoto/Energy

Active clusters Yes All 72 (þ47) 66 (þ41)

Active 80 (þ8) 81 (þ9)

Inactive 53 (þ28) 37 (þ22)

Inactive clusters No All 87 (þ12) 85 (þ10)

Inactive 88 (þ13) 87 (þ12)

Active 75 (þ50) 56 (þ31)

Figure 8. Dendrogram corresponding to the best hierarchy based on chemical fingerprint (Ufp_Unity/Tanimoto/Energy).
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of clustering approaches for rapidly obtaining an

overview of the relationships between structures and

biological data. However, it is necessary to apply the

best available metric and global comparison of these

metrics is actually carried out. Finally, the study

underscores the quality of our previous 5-HT4

antagonist pharmacophore in being able to extract

potential 5-HT4 ligands from a database.

Declaration of interest: The authors report no

conflicts of interest. The authors alone are responsible

for the content and writing of the paper.
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